小支流的河流是如何确定的?- 江南体育网页版- - - - -地球科学堆江南电子竞技平台栈交换 最近30从www.hoelymoley.com 2023 - 07 - 07 - t11:45:32z //www.hoelymoley.com/feeds/question/1077 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/1077 11 小支流的河流是如何确定的? 那加人 //www.hoelymoley.com/users/554 2014 - 06 - 05 - t13:19:24z 2014 - 06 - 05 - t17:17:01z < p >是什么标准来确定河是另一个或大或小的支流河B ?< / p > < p >流顺序是唯一决定性因素即最高秩序是主要的干细胞,少了一个订单是一个主要支流和一个较小的订单一个小支流吗?< / p > < p >我没能找到任何文学在这个网上。< / p > //www.hoelymoley.com/questions/1077/-/1078 # 1078 10 回答彼得•简颂小支流的河流是如何确定的? 彼得很 //www.hoelymoley.com/users/81 2014 - 06 - 05 - t16:00:12z 2014 - 06 - 05 - t16:00:12z < p >这是一个拓扑的问题。有三个主要试图从小到大的顺序流。< / p > < p >第一个建立了< a href = " http://www.sages.ac.uk/home/homes/s0451705/horton_1945.pdf " rel = " noreferrer " >霍顿(1941)< / >谁建立的概念< em > < / em >排水组成。建立网络流的相对重要性在霍顿建议调查每个连接和设置流进入结在最高角低流的重要性。从嘴的一条河,人可以因此建立将主干支流的河,越来越小的意义。流的订单号不能确定,直到整个树流已被命令。在strahle流顺序图的对角线将主干河流和有三个。唯一的订单两个箱子将一个贴上两个拒绝从三个图。< / p > < p > < a href = " http://gsabulletin.gsapubs.org/content/63/11/1117 " rel = " noreferrer " > strahle, 1952 < / >的概念进一步的概念,建立了< em > < / em >流顺序。在这种方法中基本流源支流是最小的。 When two streams of order one meet they form a stream of order two. It takes two of the same order to make a stream of a larger order so a stream of order two and one will not increase the order number, the result is still two. The following image provides an example of Strahler's stream order:

Strahler stream order

Strahler stream order concept. Image from Wikipedia commons

The stream order allows one to calculate an assortment of statistical measures that characterizes a drainage basin and it is possible to use these characteristics in, for example, flood prediction.

Shreve (1967) took the ideas of Horton and Strahler further by introducing magnitude, now called Shreve Magnitude. This concept differs from Strahler's in that all streams are additive so that as soon as one stream is added to another the resulting stream is the sum of the two tributaries. The result is that the system can be seen as reflecting discharge, assuming all first order streams are of similar size. In the figure above the largest magnitude would be six, this is also the sum of all order one streams.

So establishing the main trunk of a river is not necessarily simple. Hortons method does this but is at the same time relying on geometry and rivers may be heavily influenced by geology to generate odd river patterns.

References:

Horton, R.E., 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275-370. doi: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

Shreve, R.L., 1967. Infinite topologically random channel networks. Journal of Geology 75, 178–186.

Strahler, A.N., 1952. Hypsometric (area-altitude) analysis of erosional topology. Geological Society of America Bulletin, 63 (11), 1117–1142, doi:10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.

Baidu
map