河流——如何计算最大速度从截面的平均速度-地球科学堆栈交换江南电子竞技平台江南体育网页版 最近30从www.hoelymoley.com 2023 - 07 - 09 - t00:43:10z //www.hoelymoley.com/feeds/question/15194 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/15194 5 河流——如何计算最大速度在一个横截面平均速度 3 tw3 //www.hoelymoley.com/users/10681 2018 - 09 - 28 - t10:30:34z 2018 - 10 - 01 - t15:24:55z < p >我在一条小河学习流速度。我有很多数据的横截面的平均流动速度在整个流域。我知道这条河开发流速度剖面/横截面(见下文)。< / p > < p > < a href = " https://i.stack.imgur.com/ZflhS.png " rel = " noreferrer " > < img src = " https://i.stack.imgur.com/ZflhS.png " alt = "在这里输入图像描述" > < / > < br >现在我也感兴趣的某一截面的最大流速。所以我寻找一种方法来计算平均速度的最大速度。有一些公式或方法吗?< / p > < p >任何帮助感激。< / p > //www.hoelymoley.com/questions/15194/-/15201 # 15201 3 答案由杰弗里·J魏玛为河流-如何计算最大速度在一个横截面平均速度 杰弗里·J魏玛 //www.hoelymoley.com/users/13534 2018 - 09 - 28 - t23:19:52z 2018 - 10 - 01 - t15:24:55z < p >速度剖面显示的是抛物线。它的特点是< a href = " https://en.wikipedia.org/wiki/Laminar_flow " rel = " nofollow noreferrer " >层流< / >在管道或通道。发展方程显示< A href = " https://ocw.mit.edu/courses/earth -大气和行星sciences/12 - 090介绍-流体-运动-沉积物-运输-和-电流-生成-沉积-结构-下降- 2006/course textbook/ch4.pdf”rel = " nofollow noreferrer " > < / >在这个链接。一个博览会流在公开渠道< a href = " https://www.lth.se/fileadmin/tvrl/files/vvr090/lecture7_open_channel.pdf " rel = " nofollow noreferrer " > < / >在这个链接。< / p > < p >最大速度在整个配置文件是在表面(见方程4.7和语句17第一参考)。最大速度的其他范围的位置测量了垂直流总是发现底部顶部的范围(即在接近表面的流)。< / p > < p >让我们提出一个速度剖面从底部到顶部的通道。< / p > < p > <跨类= " math-container " > $ $ v (z) = Cz ^ 2 $ $ < / span > < / p > < p >这满足边界条件,< span class = " math-container " > v(0) = 0美元< / span >底部的通道。参数< span class = " math-container " > < / span >加元美元通过一个额外的测量发现的任何地方流。这个函数,我们发现平均速度的范围位置<跨类= " math-container " >佐薇美元< / span > <跨类= " math-container " > zt型< / span >美元是一个积分抛物线轮廓……

$$ <v> = \frac{\int_{zo}^{zt} v(z) dz}{zt - zo} = \frac{C}{(zt - zo)} \int_{zo}^{zt} z^2 dz = \frac{C\left(zt^3 - zo^3\right)}{3\left(zt - zo\right)} $$

An alternative way then to find $C$ when given an average velocity over a range of distances is to use this expression.

A distinction is required to understand the average velocity expressed above. An alternative view of average velocity is from measuring at a set of points over a range $zo$ to $zt$ and then averaging the measured values. This measured average has the expression

$$ <v>_m = \frac{1}{N} \sum {v_j} $$

With $H$ as the height of the channel, in the limit that $zt - zo << H$, we can assume $<v> \approx <v>_m$. Otherwise, the better approach is to use a one-point method with $v$ at $z$ and the source equation for the profile.

Finally, consider when you have multiple measurements at different positions where the positions are not differentiated but the velocities are differentiated. One approach here is to average the velocities and use any one value to the profile for $C$. The better method however will use non-linear regression method to fit data. By example, consider this hypothetical "measured" data set generated using $v = 4 z^2$ as its base.

z=1, v = 3, 4, 5, 6

z=2, v = 14, 15, 16, 17

z=3, v = 32, 33, 35, 45

A plot of the data and a non-linearized regression fit to $v = Cz^2$ is shown below. The result is $C = 4.0 \pm 0.2$.

velocity profile fit

Baidu
map