如何确定方向的海岸线从NetCDF文件-地球科学栈交流江南电子竞技平台江南体育网页版 最近30从www.hoelymoley.com 2023 - 07 - 10 - t12:28:03z //www.hoelymoley.com/feeds/question/17431 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/17431 4 如何确定方向的海岸线从NetCDF文件吗 //www.hoelymoley.com/users/8396 2019 - 07 - 11 - t13:18:42z 2021 - 06 - 08 - t18:36:50z < p >我有一个NetCDF文件landsea面具(网格数据)。我想确定,沿海网状细胞,海岸线的方向是什么。我需要这样做为了计算事故风向的夹角和沿海海岸线在每个网格单元。< / p > < p >为例,如果在某个位置的海岸线是纬向(东向西)和土地是向南,北与海,取向将0°:< / p > < p > < a href = " https://i.stack.imgur.com/crQnr.png " rel = " nofollow noreferrer " > < img src = " https://i.stack.imgur.com/crQnr.png " alt = "在这里输入图像描述" > < / > < / p > < p >如果海岸区域但陆地和海洋的位置倒,海岸的方向是180°。< / p > < p > < a href = " https://i.stack.imgur.com/6EnOs.png " rel = " nofollow noreferrer " > < img src = " https://i.stack.imgur.com/6EnOs.png " alt = "在这里输入图像描述" > < / > < / p > < p >如果海岸45°和南方的土地,角度是45°。北土地,方向是135°……你懂的。< / p >

enter image description here enter image description here

Any suggestions on how to get this information from the landsea mask grid?

Thank you in advance.

//www.hoelymoley.com/questions/17431/-/22363 # 22363 3 由BarocliniCplusplus回答如何确定方向的海岸线从NetCDF文件 BarocliniCplusplus //www.hoelymoley.com/users/704 2021 - 06 - 08 - t18:36:50z 2021 - 06 - 08 - t18:36:50z < p >应该注意,NetCDF数据描述格式的数据。我知道的一个数据集(< a href = " https://www.ncdc.noaa.gov/ibtracs/index.php?name = ib-v4-access nofollow noreferrer“rel = > IBTrACS < / >)包含数据不是网格数据,也包含一个landmask。但这是除了你的问题。< / p >

To rephrase your question: How can I determine the orientation of the coastline in a gridded dataset?

Well, one way is using mathematics. Let's call the boolean landmask variable $L$, where $L=\{^{0 \text{ if land}}_{1\text{ if water}}$ Then the gradient is $$\nabla L =\{^{<\frac{\delta L}{\delta x},\frac{\delta L}{\delta y}> \text{ at the coastline}}_{\vec{0} \text{ not at the coastline}}$$ Let's look at just the coastline. The angle is $\arctan2(\frac{\delta L}{\delta x},\frac{\delta L}{\delta y})$.

Now if you want to find out the angle difference between the coast and the wind, then you can use the properties of the dot product to find the angle difference. That is $$\delta \phi=\arccos\left(\frac{\nabla L \cdot \vec{v}}{|\nabla L||\vec{v}|}\right)=\arccos\left(\frac{u\frac{\delta L}{\delta x}+v\frac{\delta L}{\delta y}}{\sqrt{u^2+v^2}\sqrt{\left(\frac{\delta L}{\delta x}\right)^2+\left(\frac{\delta L}{\delta y}\right)^2}}\right)$$

Baidu
map