上层气旋和反气旋如何影响表面水平风?- 江南体育网页版- - - - -地球科学堆江南电子竞技平台栈交换 最近30从www.hoelymoley.com 2023 - 04 - 05 - t17:45:48z //www.hoelymoley.com/feeds/question/20226 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/20226 2 上层气旋和反气旋如何影响表面水平风? spillthrill //www.hoelymoley.com/users/6816 2020 - 09 - 20 - t02:33:51z 2020 - 10 - 08 - t08:57:20z < p >以类似百慕大高压,例如。我画了一个粗糙的插图。< a href = " https://i.stack.imgur.com/7ly1y.png " rel = " nofollow noreferrer " > < img src = " https://i.stack.imgur.com/7ly1y.png " alt = "原油说明" / > < / >引导热,潮湿的空气从墨西哥湾向北美东海岸。但上层风远离表面风/中层风,所以他们如何管理影响他们吗?< / p > < p >中间纬度气旋也一样。在左下象限(至少在北半球),它将引导寒冷、干燥的表面向西北。最终结果的范围可以从阳光明媚,低湿度条件(如龙卷风爆发后在中南)严寒。这怎么可能? < / p > //www.hoelymoley.com/questions/20226/-/20299 # 20299 3 回答由JeopardyTempest上层气旋和反气旋如何影响表面水平风? JeopardyTempest //www.hoelymoley.com/users/6298 2020 - 10 - 08 - t07:52:19z 2020 - 10 - 08 - t08:57:20z < p >高压力和低压力在任何高度不是孤立存在的。不得不提醒自己的(因此任何人随时正确),但第一件事值得强调的是,百慕大高压高是一个温暖的核心,所以一个伟大的深度延伸至大气中。< / p > < p >这张图片是一个相当典型的横截面大气35岁北6月:< br / > < a href = " https://i.stack.imgur.com/9nOu5.png " rel = " nofollow noreferrer " > < img src = " https://i.stack.imgur.com/9nOu5.png " alt = "在这里输入图像描述" / > < / > <子> <一口>来源:< a href = " https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.pressure.html " rel = " nofollow noreferrer " > NCEP / NCAR再分析月意味着< / > < /一口> < /订阅> < / p > < p >左边的两个虚线是百慕大的中心高\脊。注意它很正直和强劲的通过一个大的高度……所以风在低水平往往是风在更高的水平保持一致。高在每一层都有相同的原因……作为一个支持区域一致的哈德利环流(即造成的空气下沉。向极运动的必要性空气回到赤道一旦达到一定速度)< / p > < p >另一方面蓝色槽\低(虚线进一步向右)是倾斜的。这是典型的中间纬度气旋结构(即冷核心低点)。起始上层功能导致表面低开发之前,它(下游)因为上层的空气移动槽火花上升运动它下面由于分歧\正涡度平流随高度增加。

The result (in the NH) is there will tend to be northwesterly winds at the ground locations near where the axis of the trough is passing over (and so southwest of the surface low\northeast of the surface high). Such northwesterly winds will tend to bring cooler air and lower relative humidities in most places, but it just how cold or dry the air will be depends upon the source region of the airmass the northwest winds are blowing in (which itself relates in large part back to the strength and larger history of the trough itself).

Overall, fundamental cause of connections between motion\pressures at different atmospheric heights is the fact mass continuity must occur (if air rises, it must be replaced, and it must eventually sink somewhere else to maintain the weight-density to prevent continuing mass buildup/loss), and works out to clearer relationships such as thermal wind (the reality that different winds at different height levels is a direct consequence\identity of temperature advection in the layer between the levels) and the fact the two main terms that cause vertical motion in the quasigeostrophic approximation are differential vorticity advection with height (i.e. different spin changes at different levels causes vertical movement) and maxima of temperature advection below (plus two other terms on friction and external heat).

In a sense, the fact pressure at one elevation induces changes\motion in another elevation maybe shouldn't seem any less weird than the fact that a low-level low pressure system can affect the wind and weather hundreds of miles away from it horizontally. This isn't spooky action at a distance, this is a continuous fluid where changes to one part of it causes impacts on another part.

Baidu
map