< p >我有一个问题关于行星学。我不确定它属于这里,但天文学栈交流似乎有点奇怪,太。江南电子竞技平台< / p > < p >我想提高我对爱的理解数字。爱数字量化偏离平衡地球潮汐。均匀的身体,你可以写,例如< span class = " math-container " > $ $ k_2 = \压裂{3}{2}\大(1 + \压裂{19}{2}\压裂{\μ}{\ρgR} \大)^ {1}$ $ < / span >, < span class = " math-container " > \μ< / span >美元是刚性,< span class = " math-container " > \ρ< / span >是美元密度,< span class = " math-container " > R < / span >美元是行星的半径和<跨类= " math-container " > g < / span >美元是重力常数。我一直教非齐次的身体,例如行星核心等等,没有你需要简单的解析表达式和数值技术。我一直读< a href = " https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018JE005569 " rel = " nofollow noreferrer " > < / >究竟,,但我不认为什么是方程用于获得< span class = " math-container " > k_2 < / span >美元。在这篇文章中,描述了地球的内部通过麦克斯韦模型和伪周期安德拉德模型。这些流变模型结合使用所谓的内部结构模型。我不清楚这些是什么,。我认为他们是压力和温度的方程。 The article then says: "Based on these, the tidal Love number $k_2$ is calculated and compared against measurement." Does anyone know what equation needs to be solved to obtain the $k_2$ Love number? Or what steps need to be taken to do such a calculation? Or if you know a relevant reference, anything is greatly appreciated, because I don't know where to start.
EDIT: I found a calculation for planets in hydrostatic equilibrium (see my own answer below). If someone knows the equations for a terrestrial planet with viscoelastic behaviour, I would still be interested in that.