双层流体静力学模型的一个问题——地球科学堆栈交换江南电子竞技平台江南体育网页版 最近30从www.hoelymoley.com 2023 - 07 - 07 - t15:04:03z //www.hoelymoley.com/feeds/question/23721 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/23721 4 双层流体静力学模型的问题 //www.hoelymoley.com/users/21802 2022 - 04 - 14 - t11:46:19z 2022 - 04 - 16 - t08:40:57z

The 2-layer hydrostatic model is like thisenter image description here

And the pressure of the two layers and the top areenter image description here and it is easy to find the horizontal gradient of $p_1$ and $p_2$ \begin{equation} \begin{aligned} \nabla p_1 &= \nabla p_H\\ \nabla p_2 &= \nabla p_H + g(\rho_2 - \rho_1)\nabla h_2\\ \end{aligned} \end{equation} Now my problem is that how to get the result \begin{equation} p_2 - p_1 = g(\rho_2 - \rho_1)\eta \end{equation}

from the equations above, where$\eta = h_2 - H_2$. I find this result in the book"Fundamentals of Geophysical Fluid Dynamics" at page 164.

//www.hoelymoley.com/questions/23721/a-problem-of-the-2-layer-hydrostatic-model/23722 # 23722 5 一个问题的答案通过Joscha Fregin双层流体静力学模型 Joscha Fregin //www.hoelymoley.com/users/18833 2022 - 04 - 15 - t10:43:02z 2022 - 04 - 16 - t08:40:57z < p >让我们说,我们的目标是找到< span class = " math-container " > \“埃塔”< / span >这是美元的位移流体相对于其休息位置<跨类= " math-container " > z = H_2 < / span >美元。

We find \begin{equation} \begin{split} p_2 - p_1 &= \require{cancel} \bcancel{p_H} + \rho_1 g(\require{cancel} \bcancel{H}-h_2) + \rho_2g(h_2 - z) \require{cancel} \bcancel{-p_H} - \rho_1g(\require{cancel} \bcancel{H}-z) \\ &= (\rho_2 - \rho_1)gh_2 - (\rho_2 - \rho_1)gz \\ & = (\rho_2 - \rho_1)g(H_2 + \eta) - (\rho_2 - \rho_1)gz \end{split} \end{equation}

Dividing by $(\rho_2 - \rho_1)g$ yields

\begin{equation} \eta + H_2 - z = \frac{p_2 - p_1}{(\rho_2 - \rho_1)g}. \end{equation} The equation above tells us the distance to the interface at some height $z$ (remember the coordinate origin is at the bottom of the domain). We are interested in the displacement relative to the mean interface height $z = H_2$, so we have \begin{equation} \eta = \frac{p_2 - p_1}{(\rho_2 - \rho_1)g}, \end{equation} which is the result you are looking for. However, in the document they say that they use four more equations to derive the result. Maybe it's a mistake or maybe I'm missing something.

I was a little confused that you said we can find the result in the document - so for anyone wondering:

Using $\phi_n = p_n / \rho_0$ and $g' = g(\rho_2 - \rho_1)/\rho_0$, we find \begin{equation} \eta = \frac{(p_2 - p_1)\rho_0}{(\rho_2 - \rho_1)g\rho_0} = -\frac{\phi_1 - \phi_2}{g'}, \end{equation} which corresponds to what's shown in the document.

Baidu
map