这个折射率公式是从哪里来的:$ n_ {1} = n - 1 = \压裂10 ^{77.6便士}{T}{6} $ -地球科学栈交流江南电子竞技平台江南体育网页版 最近30从www.hoelymoley.com 2023 - 03 - 27 - t19:23:21z //www.hoelymoley.com/feeds/question/23908 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/23908 4 这个折射率公式是从哪里来的:$ n_ {1} = n - 1 = \压裂10 ^{77.6便士}{T} {6} $ 电解液 //www.hoelymoley.com/users/26999 2022 - 06 - 13 - t02:36:46z 2022 - 10 - 17 - t03:34:27z < p >方程中,< span class = " math-container " >美元n_ {1} = n - 1 = \压裂{77.6便士}{T} \ cdot 10 ^ {6} $ < / span >变量p是表达的总气压和T是开尔文。这个方程描述了湿空气的折射率随着电磁波通过。< / p > < p >这个公式出现在< a href = " https://books.google.ca/books/about/Imaging_Through_Turbulence.html?id=nuIC-Mk0R4UC" rel="nofollow noreferrer" title="'Imaging through turbulence', Michael Roggemann and Byron Welsh, CRC Press 1996">Roggemann & Welsh from 1996, but a similar version existed in 1953 (Smith, Weintraub). The current literature uses this formula extensively but its never been properly explained.

//www.hoelymoley.com/questions/23908/where-does-this-refractive-index-formula-come-from-n-1-n-1-frac77-6p/24422 # 24422 3 答案由大卫·贝利这个折射率公式是从哪里来的:美元n_ {1} = n - 1 = \压裂10 ^{77.6便士}{T} {6} $ 大卫·贝利 //www.hoelymoley.com/users/27775 2022 - 10 - 17 - t03:34:27z 2022 - 10 - 17 - t03:34:27z < p >空气的折射率< a href = " https://en.wikipedia.org/wiki/Refractive_index #密度”rel = " nofollow noreferrer " >尺度线性密度< / >,和一个想法气体密度正比于压力和温度成反比。在典型大气条件下,干燥的空气相当理想,所以我们可以写:< / p > < p > <跨类= " math-container " > $ $ n_ {1} = n - 1 = \压裂{(n_0-1) T_0} {P_0} \压裂{p} {T} $ $ < / span > < / p > < p >, < span class = " math-container " > n_0 < / span >是美元折射率在参考温度<跨类= " math-container " > T_0 < / span >美元和压力<跨类= " math-container " > P_0 < / span >美元。

Smith and Weintraub used a value of $n_0-1 = 288.04\times10^{-6}$ which was the average of 3 published values for visible, 9 GHz, and 24 GHz electromagnetic radiation measured at $T_0 = 273\,\textrm{K}$ and $P_0 = 1013.15\,\textrm{mb}$, which gives

$$n_{1} = n - 1 = 77.6\times 10^{-6} \frac{P}{T}$$

(I figured this out while wrestling with a similar commonly-used but obscurely-sourced equation relevant to my own question "How distant is the horizon on Venus?".)

Baidu
map