< p >没有足够强大的吸收任何在这个波长的温室气体。然而这并不意味着没有。< / p > < p >记住你所看到的是传输函数,绘制在线性范围内,添加到它。每个波长传输函数在一定大气高度z被定义为< span class = " math-container " > $ T =我(z) / I_0 = e ^{- \τ(z)} $ < / span >,在光学深度<跨类= " math-container " > \τ< / span >美元是视距积分所有物种的混浊乘以密度沿着一条路径,即< span class = " math-container " > $ \τ(z) = \ int_z ^ \ infty dz \;\ sum_ {\ rm物种}\ rho_s (z) \ kappa_{年代}(z) < / span >,美元在< span class = " math-container " > \ρ(z)美元< / span >是一个物种的密度<跨类= " math-container " > s < / span >美元在给定的高度,和<跨类= " math-container " > $ \ kappa_{年代}$ < / span >。< br / >快速看水的透明度在对数刻度1酒吧和300 k(从< A href = " https://dace.unige。ch /透明/ noreferrer“rel = >鲦鱼透明度数据库< / >)显示,只有普通分子显著下降波段波长,而不是其它。同样与其他物种。< / p > < p > < a href = " https://i.stack.imgur.com/06vz0.png " rel = " noreferrer " > < img src = " https://i.stack.imgur.com/06vz0.png " alt =“不透明度功能水在酒吧和300 k”/ > < / > < / p > < p >事实上,就在4微米似乎有一个可疑的下降是因为我们的常压塔深度积分类< span = " math-container " > \ρ(z)美元< / span >在这个波长只给了一个小,但非零值< span class = " math-container " > \τ(z)美元< / span >。如果传输情节是对数,你会看到这个非零值。< / p > < p >此外,试图理解< / p > < blockquote > < p >这是为什么呢? It seems like a rather odd coincidence for so many things to be transparent to 4 μm (a specific wavelength of mid-wavelength infrared) EM radiation. Just think of molecular opacities being periodic signals in wavelength space. If you stack enough periods, you will always find a minimum somewhere, by superposition. For the few ingredients you mentioned, this minimum just happens to be at 4$\mu$m.