指数p是什么意思在重力势的梯度压力坐标?- 江南体育网页版- - - - -地球科学堆江南电子竞技平台栈交换 最近30从www.hoelymoley.com 2023 - 03 - 25 - t15:16:06z //www.hoelymoley.com/feeds/question/24638 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/24638 2 指数p是什么意思在重力势的梯度压力坐标? MichaelW //www.hoelymoley.com/users/21047 2022 - 12 - 17 - t11:25:24z 2022 - 12 - 20 - t20:54:19z < p >我目前听到的系列教程视频大气动力学作为第一开始准备阅读更详细的材料,如霍尔顿。特别是我指的这部分:< / p > < p > < a href = " https://www.youtube.com/watch?v=YjugCNkLD0k&list=PL_cuIb7hx5lg_zHfUVsUrw6I66U4jq8Dq&index=10" rel="nofollow noreferrer">https://www.youtube.com/watch?v=YjugCNkLD0k&list=PL_cuIb7hx5lg_zHfUVsUrw6I66U4jq8Dq&index=10

enter image description here

I can follow more or less the derivation of what we see here, namely that by using p instead of z for the vertical coordinate the pressure force on an air parcel reduces to gradient of geopotential $\Phi$:

Still I have some troubles with regard to the mathematical formalism:

What does $\left(\frac{\partial \Phi}{\partial x}\right)_p$ mean mathematically? I would have assumed, that $\Phi$ is a function of $x, y, p$: $\Phi = \Phi(x,y,p)$ and, therefore $\frac{\partial \Phi}{\partial x}$ means to keep y,p as constant and consider only the change of $\Phi$ caused by a change in x (this is the definition of partial derivative). Why do we write $\left(\frac{\partial \Phi}{\partial x}\right)_p$ instead? Once we agree on a special set of coordinates we dont have to specify what other coordinates are held constant for the partial derivative. But if we decide to do it, why is it then not written as $\left(\frac{\partial \Phi}{\partial x}\right)_{y,p}$ ? Looks a bit confusing.

Because of this notational discrepancy, I'm afraid I haven't quite gotten the "magic behind it" yet, maybe missing the most important point of all, and therefore just think I got it.

Can somebody explain, where I have my missing point?

//www.hoelymoley.com/questions/24638/-/24657 # 24657 3 答案由BarocliniCplusplus索引“p”是什么意思在重力势的梯度压力坐标? BarocliniCplusplus //www.hoelymoley.com/users/704 2022 - 12 - 20 - t20:54:19z 2022 - 12 - 20 - t20:54:19z < p >下标< span class = " math-container”> $ p $ < / span >表示,压力面。这或多或少是一个派生形式,因此普遍下降。它植根于链式法则< / p > < p >换句话说,它消除了这个难题的复杂性类< span = " math-container " > $ \φ= \φ(x, y, p (x, y)) $ < / span >。通过具体说明你正在一个等压面,你把< / p > < p > <跨类= " math-container " > $ $ \压裂{\部分\φ}{x} \部分=(\压裂{\部分\φ}{x} \部分)_ {p =常数}+ \压裂{\部分\φ}{\部分p}(\压裂{\部分p} {x} \部分)_ {z =常数}$ $ < / span >到<跨类= " math-container " > $ $ \压裂{\部分\φ}{x} \部分=(\压裂{\部分\φ}{x} \部分)_ {p} $ $ < / span >。< / p > < p >如果你用链式法则,使抽象的概念,你可以扩大它在各种各样的工作表面。你可以把从坐标PV压力或温度坐标方程,例如。< / p >
Baidu
map