更深层次的区别是什么路上ω方程和路上高度倾向方程?- 江南体育网页版- - - - -地球科学堆江南电子竞技平台栈交换 最近30从www.hoelymoley.com 2023 - 07 - 09 - t11:48:45z //www.hoelymoley.com/feeds/question/25366 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/25366 3 更深层次的区别是什么路上ω方程和路上高度倾向方程? MichaelW //www.hoelymoley.com/users/21047 2023 - 07 - 05 - t19:18:11z 2023 - 07 - 06 - t08:11:39z < p > quasi-geostrophic < span class = " math-container”> \ω< / span >美元方程< / p > < p > < a href = " https://i.stack.imgur.com/4RZ22.png " rel = " nofollow noreferrer " > < img src = " https://i.stack.imgur.com/4RZ22.png " alt = "在这里输入图像描述" / > < / >是一个诊断方程类< span = " math-container " > \ω< / span >美元(= dp / dt =垂直运动)位势。它是派生的几步操作温度和涡度方程。

On the other hand, by a similar manipulation or the same two equations, we obtain the quasi-geostrophic height tendency equation for $\chi := \partial \Phi /\partial t $ enter image description here

Both equations have are related to "vertical motion" ($\omega, \chi$), are they telling more or less the same? I marvel at the amazing similarities and the subtle differences of the two terms on the right. What are the applications of both equations in particular - when to use the first, when the second?

Baidu
map