这是什么意思波浪底部“感觉”?- 江南体育网页版- - - - -地球科学堆江南电子竞技平台栈交换 最近30从www.hoelymoley.com 2023 - 07 - 10 - t13:17:07z //www.hoelymoley.com/feeds/question/2599 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/2599 18 这是什么意思波浪底部“感觉”? zergsomg //www.hoelymoley.com/users/968 2014 - 10 - 09 - t00:43:14z 2014 - 10 - 10 - t01:36:22z < p >而通常波说“感觉”底部当水深小于半波长,这是什么意思的波浪“感觉”?< / p > < p >此外,为什么这发生在半波长的深度吗? < / p > //www.hoelymoley.com/questions/2599/-/2600 # 2600 21 milancurcic回答的什么意思波浪底部“感觉”? milancurcic //www.hoelymoley.com/users/192 2014 - 10 - 09 - t03:16:28z 2014 - 10 - 10 - t01:36:22z < p >在水波物理,当我们说“感觉”浪潮,我们意味着水深影响波的性质。< / p > < p >水波的色散关系是:< / p > < p > $ $ \ω^ 2 = gk \双曲正切{(kd)} $ $ < / p > < p > \ω是波频率美元,k是波数,美元d美元平均水深,重力加速度g是美元。We distinguish "shallow" and "deep" water waves by the value of $kd$, which includes both the wavenumber and the water depth:

  • Shallow water waves when $kd < 0.3$;
  • Intermediate water waves when $0.3 < kd < 3$;
  • Deep water waves when $kd > 3$.

Thus, a long swell wave may act as a shallow water wave in depths of 10 m, but also a very short wave may act as a deep water wave in depths of 1 m.

How are these limits for $kd$ obtained? The tangent hyperbolic function has some convenient properties for the limiting values of its argument:

tanh(kd)

For deep water waves, $kd$ is very large, so $\tanh{(kd)} \rightarrow 1$. The dispersion relationship then reduces to:

$$ \omega^2 = gk $$

Phase and group speeds are then:

$$ C_p = \dfrac{\omega}{k} = \sqrt{\dfrac{g}{k}} $$

$$ C_g = \dfrac{\partial \omega}{\partial k} = \dfrac{1}{2}\sqrt{\dfrac{g}{k}} $$

Notice that $C_p$ and $C_g$ are not a function of water depth, thus it is said that deep water waves don't "feel" the bottom.

On the other hand, for shallow water waves, $kd$ is small (approximately 0.3 or less), and $\tanh{(kd)} \rightarrow kd$. The dispersion relationship is now:

$$ \omega^2 = gk^2d $$

and phase and group speeds are functions of water depth:

$$ C_p = \dfrac{\omega}{k} = \sqrt{gd} $$

$$ C_g = \dfrac{\partial \omega}{\partial k} = \sqrt{gd} $$

So, why is it said that the waves "feel" the bottom at the water depth of half wavelength?

$$ kd = k \dfrac{\lambda}{2} = k \dfrac{2\pi}{2k} = \pi $$

and this is approximately the value below which the regime transitions from deep water to intermediate water, i.e. $\tanh{(kd)} \approx 1$ does not hold anymore.

//www.hoelymoley.com/questions/2599/-/2601 # 2601 18 回答的等密度线振荡为波是什么意思“感觉”底部? 等密度线振荡 //www.hoelymoley.com/users/200 2014 - 10 - 09 - t03:21:38z 2014 - 10 - 09 - t06:46:37z < p >感觉是指底部的波浪诱导速度场从顶部延伸的水柱底部的水柱。当波”感觉底部”这意味着有一些与底部边界的相互作用。底部很薄的边界层的发展,由于速度场相互作用生成涡度床粗糙度。涡度可以扩散到室内的液体和湍流边界层内活动负责。由于海浪的持久自然,他们的行动被认为发挥重要作用在颗粒物在近岸的再分配,如营养、幼虫、沉积物和污染物。< / p > < p > 1/2的价值深度有些武断,但提供了一个良好的估计基于理论(见IRO-bot的回答)。这张照片是它很好。< / p >

The shape of the orbit http://science.kennesaw.edu/~jdirnber/oceanography/LecuturesOceanogr/LecWaves/1006.jpg

Baidu
map