如何计算平衡函数用于潮流计算使用谐波成分-地球科学栈交流吗江南电子竞技平台江南体育网页版 最近30从www.hoelymoley.com 2023 - 07 - 10 - t20:57:42z //www.hoelymoley.com/feeds/question/4209 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/4209 8 如何计算平衡函数用于潮流计算使用谐波成分 user824 //www.hoelymoley.com/users/0 2015 - 01 - 07 - t19:42:41z 2015 - 01 - 08 - t03:38:20z < p >我发现使用谐波成分丰富的信息来计算潮流的水平。H (t) =振幅* cos (t * harmonicSpeed +相位滞后)。然而,当我试图把这个应用到选民从NOAA结果不匹配表。我已经发现NOAA选民需要额外的术语,结果组成的平衡值函数看起来更像< / p > < p > H (t) =振幅* cos (t * harmonicSpeed + EquilibriumValue +相位滞后)。< / p > < p >我在寻找任何暗示这个平衡值是如何计算或派生的。< / p > < p >附录:这里的成分被发现,这对于圣地亚哥,Ca < a href = " http://tidesandcurrents.noaa.gov/harcon.html?id = 9410170 " rel = " nofollow”圣地亚哥< / > >成分。很抱歉找不到平衡值的来源但是当我下班回家。< / p > //www.hoelymoley.com/questions/4209/-/4210 # 4210 3 arkaia回答的如何计算平衡函数用于潮流计算使用谐波成分 arkaia //www.hoelymoley.com/users/111 2015 - 01 - 07 - t22:29:37z 2015 - 01 - 08 - t03:38:20z < p >平衡潮是一个理论概念由牛顿在17世纪,只考虑月球和太阳的引力和离心力,没有惯性,没有摩擦,没有陆地。NOAA的定义:< / p > < blockquote > < p >平衡理论——一个模型,它假定水覆盖了地球表面立即回应月球和太阳的引潮力作用下表面形成一个平衡的力量。模型忽视了摩擦、惯性和不规则分布的地球的陆地。在这些条件下形成的理论潮流被称为平衡潮。< / p > < /引用> < p >可以考虑作为第一把两个潮流生产力量只有月亮和地球系统有关。地球的两个是离心力的质心Moon-Earth系统和由于月球引力。点最接近月亮:< / p > < p > $ $力= \压裂{GM_1M_2} {(rr) ^ 2} - \压裂{GM_1M_2} {R ^ 2} $ $ R是地球和月球之间的距离和R是地球的半径。它变得稍微复杂表面上其他点,因为不是必须使用$ $ R R \点因为引力(lat) $ $。< / p > < p >最终归结为一组水平的力量往往集中在两个理论要点:1、最接近月亮和两个,从月亮最远的。会达到一个平衡状态,叫做<强>平衡潮< / >强,结果在一个椭球与它的两个凸起指向月亮,远离。

In practice, this equilibrium ellipsoid does not develop because of the rotation of Earth, the Coriolis acceleration and the fact that the tidal wave feels the ocean bottom and it is subject to friction. Going beyond the equilibrium theory of the tide, the dynamic theory of tides (developed by Euler, Laplace and Bernoulli) includes all these concepts (friction, inertia, Coriolis, land masses,...) and provides a better approximation to the observed tides.

My recommendation to understand tidal constituents is to use some decent tidal harmonic analysis package like t_tide for Matlab, which is likely to be the tool that NOAA is using to generate their harmonic constituents in the first place. If you really want to get into the details, then the best option is to go to the still likely best source available. That will the 1973 book "The Analysis of Tides" by G. Godin.

Pawlowicz, R., B. Beardsley, and S. Lentz, "Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB using t_tide", Computers and Geosciences, 28, 929-937 (2002).

Godin, G. (1973). The analysis of tides., by Godin, G.. Liverpool (UK): Liverpool University Press, 264 p.

Baidu
map