$$s=(1-q_t)(C_{pd} \ln{T}-R_d\ln{p_d})+q_tC_l\ln{T} + \frac{q_vL_v}{T}-q_vR_v\ln{\mathcal{H}}$$
在统计均衡中,熵预算采用以下形式
$$\frac{Q_{\mathrm{lat}}+Q_{\mathrm{sen}} {T_{\mathrm{surf}}}+\frac{Q_{\mathrm{rad}} {T_{\mathrm{rad}} +\Delta{S}_{\mathrm{irr}}=0$$
这些都在本文。
不可逆熵是由不可逆相变、水蒸气扩散和下落水蒸气的摩擦耗散产生的。熵可以减少加速对流上升气流和下降气流的功。< / p >
I'm just wondering - how will the amount of entropy in the atmosphere change as a result of climate change? Seeing that global warming tends to decrease the pole-to-equator gradient (resulting in a more homogeneous temperature distribution), I wonder if it might increase?