影响雨影大小的因素是什么?-地江南体育网页版球科学堆栈交换江南电子竞技平台 最近30个来自www.hoelymoley.com 2023 - 03 - 25 - t18:19:22z //www.hoelymoley.com/feeds/question/605 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/605 15 影响雨影大小的因素是什么? congusbongus //www.hoelymoley.com/users/85 2014 - 04 - 30 - t02:50:03z 2015 - 01 - 13 t07:10:21z

雨影是山背风面的干燥区域。由于潮湿空气的凝结和沉淀,它们被抬升到山上,到达背风面时失去水分,形成一个相对干燥的地区。

什么因素影响这个干燥区域的大小,如何影响?< / p >

//www.hoelymoley.com/questions/605/-/616#616 4 什么因素影响雨影的大小? 肖恩 //www.hoelymoley.com/users/313 2014 - 04 - 30 - t13:12:21z 2014 - 04 - 30 - t22:10:53z 当然,首先你需要一个潮湿空气与干燥空气碰撞的碰撞区,因此你需要考虑一个与造成雨影的气流相反方向的相当大的气流。例如,在欧亚大陆,喜马拉雅雨影一直延伸到哈萨克大草原,直到黑海和里海的区域气候效应缓和了干燥。俄罗斯的心脏地带拥有得天独厚的德维纳-苏霍纳河;从库本斯科耶湖开始;它受到波罗的海气流的恩惠,仍然受到西风带的影响,因此湿润气流不会直接从相反方向与干燥空气碰撞,而是从侧面碰撞。相比之下,德国东北部的梅克伦堡-前波莫恩位于德国中部哈尔茨山脉的雨影内,但奥得河也在雨影内。这就引出了第二点:拓扑浮雕。它是否向雨影倾斜,以便雨水从另一侧流入雨影?< / p >

In this case, sooner or later you will form rivers - and lakes, unless the river meets the sea very quickly (as in the case of Germany and the Baltics). As soon as you have lakes, the rain shadow will be moderated.

Taking yet another example, the Kalaharis: east of Namibian Great Escarpment, and west of Highveld/Drakensberg. Thus Kalahari lies within a rain shadow from both east and west - and despite the river Okawango flowing in it, the climate is not moderated.

So there are uncountably many factors that contribute to your question.

//www.hoelymoley.com/questions/605/-/4255#4255 3. 是什么因素影响雨影的大小? 等密度线振荡 //www.hoelymoley.com/users/200 2015 - 01 - 13 t06:37:11z 2015 - 01 - 13 t07:10:21z

遵循由Roe and Baker (2006)所建立的渐近模型,有四个基本参数支配动力学:

  • $R_0 \to$迎风空气柱中的垂直积分凝结率。

  • $\Theta_{W,L} \to$雨滴轨迹坡度与地形坡度的比值。

  • $\mu \to$山高与水分标高之比。< / p >

  • $\Psi_{W,L} \to $Ratio of mountain length to the formation length scale (of falling hydrometeors).

What affects the amount of precipitation on the leeward flank is a combination of all these parameters, the full expression is found in Roe and Baker (2006) and it is rather complicated. However, if we consider the limits $\Psi_{W,L}, \Theta_{W,L} >>1$, that is, steep trajectories of falling hydrometeors and large orogen size then asymptotically we can estimate the precipitation on the windward side

$$P_w = \frac{R_0}{\mu}(1-e^{-\mu})$$

and on the leeward side

$$P_L = \frac{R_0}{\Theta_L\mu}(e^{-\mu}).$$

The latter says that, for large orogen size as compared to moisture scale height (large $\mu$), the precipitation on the leeward side vanishes, $P_L \to 0$. This is because on the windward flank, the average precipitation approaches a finite upper bound as it depletes all moisture in the air column.


Roe, Gerard H., and Marcia B. Baker. "Microphysical and geometrical controls on the pattern of orographic precipitation." Journal of the Atmospheric Sciences 63.3 (2006): 861-880.

Baidu
map