火星地壳组成——地球科学堆栈交换江南电子竞技平台江南体育网页版 最近30从www.hoelymoley.com 2023 - 07 - 09 - t22:57:23z //www.hoelymoley.com/feeds/question/9505 https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/9505 10 火星地壳的组成 wogsland //www.hoelymoley.com/users/7335 2017 - 01 - 21 t16:20:51z 2022 - 05 - 28 - t03:47:15z < p >火星地壳的组成大致对应于地球的地壳。即是元素丰度递减顺序硅、氧、铝、等。< / p > //www.hoelymoley.com/questions/9505/-/9507 # 9507 6 由地球科学回答外籍火江南体育网页版星地壳的组成 江南体育网页版地球科学外籍 //www.hoelymoley.com/users/1149 2017 - 01 - 21 t23:20:13z 2022 - 05 - 27 - t17:24:33z < p >地球上最丰富的元素有:< / p > < pre > <代码>元素近似8.1 27.7 46.6重量%氧硅铝铁5.0 3.6 2.8 2.6钾钠钙镁2.1其他1.5 < /代码> < / pre > < p >来源:< a href = " http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/elabund.html " rel = " nofollow noreferrer " > http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/elabund.html < / > < / p > < p >基于数据从NASA和ESA航天器和探测器,(细在维基百科上总结:< a href = " https://en.wikipedia.org/wiki/Composition_of_Mars " rel = " nofollow noreferrer " > https://en.wikipedia.org/wiki/Composition_of_Mars < / >)。地壳的四大元素是最有可能是一样的。他们在火星和地球大致相同,可以在基本比例< / p > < ul > <李> < p > < / p > < /李>氧硅<李> < p > < / p > < /李> <李> < p > < / p > < /李>铝铁<李> < p > < / p > < /李> < / ul > < p >我希望在某种程度上,火星上元素的相对丰度,偏离地球上基于以下差异:< / p > < ul > <李> < p >地球和火星是最有可能形成于两种截然不同的距离太阳系的中心。这可能显著影响两个行星之间的元素丰度。李李< / p > < / > < > < p >地球上有大量的水从其历史上早期以来记录的一些地球上最古老的岩石是在澳大利亚meta-sedimentary存款。李李< / p > < / > < > < p >我们不知道火星上没有多少水。火星是目前非常干燥。水在地球上的元素分布起着很大的作用,我想是水将会在火星上扮演了一个小角色。李李< / p > < / > < > < p >最后,我越来越相信,生物活性也显著影响地球上的元素分布。细菌/ < a href = " https://en.wikipedia.org/wiki/Archaea " rel = " nofollow noreferrer " >古生菌< / >在深岩石在南非发现了金矿,这是非凡的。细菌和古菌可能发挥更大的作用比传统上认为的各种地质过程。 The Mantle is no longer viewed has dry and sterile.

  • Life and past life on Mars (even as Bacteria or Archaea) are yet to be verified.

  • //www.hoelymoley.com/questions/9505/-/20711 # 20711 4 答案由奥斯卡Lanzi火星地壳的组成 奥斯卡Lanzi //www.hoelymoley.com/users/20607 2021 - 01 - 21 t03:12:43z 2022 - 05 - 28 - t03:47:15z < p >虽然火星地壳最丰富的元素的一组类似地球的——例如,硅氧行星是# 1和# 2——有一些差异。与地壳相比,火星版本有更多的铁和镁,和更少的铝、钙、和碱金属。显示了火星上的五大元素< a href = " https://www.lpi.usra.edu/education/IYPT/Mars.pdf " rel = " nofollow noreferrer " > < / >:氧、硅、铁<强> < /强>,镁铝,<强> < /强>元素的地方大胆排在他们的位置在地球地壳组成。钙和碱金属钠和钾进一步名单,排名比地球上的火星上。< / p > < p > <强>寻找美国(和欧亚大陆、非洲…)< /强> < / p > < p >除了美人鱼,人鱼(男性同行),也许一些岛民,我们不仅生活在地壳。我们生活在< em > < / em >大陆地壳,granite-rich岩石组成。这是区别海洋外壳主要基于玄武岩和其他镁铁质岩石。< / p > < p >火星,尽管可能都曾经是一个湿的世界,没有证据显示任何类似大陆地壳的形成[1]。盖尔陨石坑岩石的研究表明,显然表示坚定不移的材料不是从大陆地壳,但局部分馏过程,和火星更普遍的主要有玄武岩地壳。同样,McSween et al。[2]报告在他们的文摘:< / p > < blockquote > < p >在火星表面的岩石是由广泛的部分熔融形成的拉斑玄武岩质玄武岩居多,不是高度风化。 Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent.

    Cream rises to the top

    The presence or absence of continental crust impacts crustal composition because, while ocean crust is primarily mafic, granite-rich continental crust is primarily felsic, meaning its igneous rock components are mostly minerals rich in aluminum and alkali metals. This is in contrast with mafic rock which contains more calcium, iron and magnesium. Felsic rock is less dense than mafic rock, and geological processes on Earth concentrated the felsic rock at the outer surface of Earth. Calcium-rich mafic rock, which is less dense than rock containing higher amounts of magnesium and iron (which are generally mixed together in igneous-rock minerals), would also rise to the top. Thus on Earth, calcium, aluminum and alkali metals have been enriched by forming a continental component in our crust; while on Mars these geologic processes were apparently lacking and the crust remained closer to the heavy, mafic, iron- and magnesium-rich composition of the bulk of the planet's rock.

    References

    1. Arya Udry, Esteban Gazel, and Harry Y. McSween Jr., "Formation of Evolved Rocks at Gale Crater by Crystal Fractionation and Implications for Mars Crustal Composition", Journal of Geophysical Research: Planets 123 (2018), Issue 6, pp. 1525-1540. Link
    2. Harry Y. McSween Jr.1,G. Jeffrey Taylor, and Michael B. Wyatt, "Elemental Composition of the Martian Crust", Science 324 (2009), Issue 5928, pp. 736-739. Link
    Baidu
    map