活跃的问题标记摘要-地球科学堆栈交换江南电子竞技平台江南体育网页版 最近30从www.hoelymoley.com 2023 - 07 - 10 - t01:18:36z //www.hoelymoley.com/feeds/tag/ncep https://creativecommons.org/licenses/by-sa/4.0/rdf //www.hoelymoley.com/q/10581 2 无法打开.f000 pygrib文件格式 abe732 //www.hoelymoley.com/users/8348 2017 - 06 - 13 - t20:27:24z 2019 - 04 - 01 - t17:46:02z < p >我已经处理GFS数据使用pygrib在Python中,可以下载和处理数据存储在.grb .grib2文件格式和NCEP存档ftp站点。当我切换到试图打开一种文件格式文件的实时分析,然而,我不能。我试着下载手动和改变文件的结束.grib2 .grb,但是没有效果。这是ftp站点,我试图访问供参考:< a href = " http://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.2017061300/ " rel = " nofollow noreferrer " > http://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.2017061300/ < / > < / p > //www.hoelymoley.com/q/13584 4 NCEP格丽的乐队名字是什么文件? 塞吉奥 //www.hoelymoley.com/users/6489 2018 - 03 - 11 - t22:27:45z 2018 - 03 - 12 - t12:10:06z < p >我下载从摘要.grib文件:< a href = " ftp://nomads.ncdc.noaa.gov/GFS/analysis_only/ " rel = " nofollow noreferrer " > ftp://nomads.ncdc.noaa.gov/GFS/analysis_only/ < / > < / p > < p >每个文件有315个乐队。他们的名字是什么?

Reproducibility with R:

library(stars) library(cptcity) met <- read_stars("ftp://nomads.ncdc.noaa.gov/GFS/analysis_only/201501/20150103/gfsanl_3_20150103_0000_000.grb") met2 <- filter(met, band == 2) plot(met2, col = cpt()) 

enter image description here

//www.hoelymoley.com/q/9368 4 全球网格每日温度(2米):区别gef Reforcast和NCEP再分析 dothatrumba //www.hoelymoley.com/users/7217 2016 - 12 - 28 - t17:09:19z 2016 - 12 - 30 - t12:21:37z < p >我在寻找网格/光栅的估计每日平均温度在2米)(理想情况下环境/公共卫生分析。具体地说,我想关联每日死亡率统计每日平均环境温度(在全球范围内,1990 - 2016年之间)。我想用网格数据而不是附近温度站允许一些推断没有电台的地区长时间序列(例如的大片撒哈拉以南的非洲地区)。< / p > < p >温度的度的准确性是相对不太重要的日常变化对于这个项目的准确性。< / p > < p >似乎< a href = " https://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html " rel = " nofollow noreferrer " > gef Reforcast < / >和< a href = " https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html " rel = " nofollow noreferrer " > NCEP再分析< / >产品均提供每日平均温度在全球范围,尽管在不同的空间分辨率。我已经看了文档和潜在的论文,但是我和地球科学背景较弱不能推测出这两种产品的区别。江南体育网页版< / p > < p >是一个产品比另一个更好的全球环境温度的估计意味着什么?有一个简单的区别两种产品,我已经错过了吗?< / p > < p >参数我关心(约):< / p > < ol > <李>每日平均温度测量与全球覆盖< /李> <李>高空间分辨率< /李> <李>每天精度变化(例如,如果第一天是X度温度比第二天,是反映吗?)< /李> <李>每日平均估计精度< /李> < / ol > //www.hoelymoley.com/q/2263 14 奇怪的结构在温度每天66年NCEP再分析 丹尼尔·马勒 //www.hoelymoley.com/users/673 2014 - 07 - 13 - t05:57:57z 2015 - 08 - 26 - t19:36:45z < p >我做了一些简单的分析历史表面温度的NOAA < a href = " http://www.cpc.ncep.noaa.gov/products/wesley/reanalysis.html " rel = " nofollow noreferrer " > NCAR / NCEP再分析< / >(下载< a href = " ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.dailyavgs/surface/ " rel = " nofollow noreferrer " > ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.dailyavgs/surface/air.sig995。* .nc < / >)。它由66年的每天73 * 144点网格温度值。

The analyses I have done range from doing a simple historical average for each grid point to trying various matrix decomposition methods such as SVD, NMF & ICA to try identify interesting patterns and applying simple image processing filters to view the results.

One of the recurring features showing up in different analyses are wavelike pattern most prominent approximately along the Humboldt, Equatorial, Gulf Stream currents. These patterns appear to have a wave length of ~550 km. This is not something I would expect to see in temperature distribution data. The natural thought is that they are some kind of artifact, but they appear across range of algorithms and parameter settings. They also appear in analyses of subsets of the data. This leads me to think that these patterns really are in the data, though they could be some kind of artifact of the data collection process or reanalysis.

Here is a short discussion of these patterns. I would like to find out:

  • if similar patterns have been observed in other analyses
  • suggestions for convincingly determining if these patterns are physical or some kind of artifact
  • suggestions of plausible explanations if these patterns are physical

Here are some processed images that show the patterns:

historical median and local rank filter thereof

The image on the right is a local rank filter applied to the historical median at each grid point (left image).

ICA components

10 ICA components of the date by grid point matrix for the Pacific region.

The patterns are strongest in the second row images and the left image on the third row. They appear to emanate from the coast of Chile NW towards the central pacific. The images are histogram equalized to improve contrast.

//www.hoelymoley.com/q/5417 5 的高度是什么NCEP / NCAR再分析1变量? 赫尔曼Toothrot //www.hoelymoley.com/users/3061 2015 - 08 - 21 - t10:00:31z 2015 - 08 - 21 - t23:08:52z < p >我困惑的地面高度这个数据集。http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html < a href = " http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html " > < / > < / p > < p >我要再处理这个数据集,需要知道这个信息。< / p >
Baidu
map