我有一个关于笛卡尔坐标系下大圆计算的问题
是否有可能在UTM坐标中计算沿大圆的点,即给定两个点P1(easting1, northing1)和P2 (easting2, northing2),是否有一个公式来计算沿连接这两个点的测地线上的路点(不转换为地理坐标并返回)?
任何帮助都是感激的!谢谢!
江南体育网页版地球科学堆栈交换是一个为那些江南电子竞技平台对地质学、气象学、海洋学和环境科学感兴趣的人提供的问答网站。注册只需要一分钟。
注册加入这个社区吧UTM坐标系是一种横向墨卡托投影,以经度带分隔,纬度范围限制,因此与投影相关的失真保持较小。同样,UTM坐标系是正形投影.因此,它保留了角度。这意味着在UTM区域内,UTM投影中的直线是在UTM区域内相对较短距离上的一个很好的近似大圆。如果你不需要很高的精度,你可以只画出P1和P2之间的直线。
下面的图表显示了直线与大圆的最大偏差。在本例中,P1为赤道和经度3°E上的红点,并计算显示框中所有6°x6°的点的最大偏差。
虽然在几百公里的距离内差异很小,但在更大的距离内,差异会更大,特别是当P1和P2位于不同的UTM区域时。
如果应用程序需要更大的距离,就不应该使用UTM投影。或者,如果您的应用程序要求在适合UTM投影的距离上有更高的精度,您可以计算大圆轨迹,但我不知道任何直接公式。
我所使用的,我知道这不是你想要的,是一些Matlab函数,用于转换UTM坐标和另一个计算地理坐标中的大圆轨道:
函数[lat,lon] = greatCircle(P1,P2,N) % greatCircle计算大圆圆弧沿点连接点P1 %和P2 % P1,P2格式:[lat,lon] % N:大圆圆弧沿点数lat1=P1(1);lon1 = P1 (2);lat2 = P2 (1);lon2 = P2 (2);lon12 = lon2-lon1;a1 = atan2d (cosd (lat2)。*信德(lon12), (cosd (lat1) *信德(lat2)信德(lat1) * cosd (lat1)。* cosd (lon12)));% a2 = atan2d (cosd (lat1)。*信德(lon12), (-cosd (lat2) *信德(lat1) +信德(lat2) * cosd (lat1)。* cosd (lon12)));a0 = atand(信德(a1)。* cosd (lat1)。/√((cosd (a1)。^ 2)+(信德(a1)。^ 2)。*(信德(lat1)。^ 2)));sigma01 = atan2d(罐内(lat1) cosd (a1));sigma12 = atan2d(√(cosd (lat1) *信德(lat2)信德(lat1) * cosd (lat2) * cosd (lon12)) ^ 2 + (cosd (lat2) *信德(lon12)) ^ 2),(信德(lat1) *信德(lat2) + cosd (lat1) * cosd (lat2) * cosd (lon12))); sigma02=sigma01+sigma12; lon01=atan2d(sind(a0)*sind(sigma01),cosd(sigma01)); lon0=lon1-lon01; sigma=linspace(sigma01,sigma02,N); lat=atan2d(cosd(a0)*sind(sigma),sqrt(cosd(sigma).^2+sind(a0)^2*sind(sigma).^2)); lon=wrapTo360(atan2d(sind(a0)*sind(sigma),cosd(sigma))+lon0); end
对于转换:
函数(x, y, utmzone) = deg2utm(纬度,经度,黑龙江 ) % ------------------------------------------------------------------------- % [ x, y, utmzone] = deg2utm(纬度、经度)% %描述:函数将纬度/经度向量转换为UTM坐标(WGS84)。已经从UTM中提取了一些代码。m函数由Gabriel Ruiz Martinez设计。% %输入:% Lat:纬度向量。度。+ ddd。Lon:经度向量。度。+ ddd。ddddd WGS84 % %输出:% x, y, utmzone。例1:% Lat=[40.3154333; 46.283900; 37.577833; 28.645650; 38.855550; 25.061783]; % Lon=[-3.4857166; 7.8012333; -119.95525; -17.759533; -94.7990166; 121.640266]; % [x,y,utmzone] = deg2utm(Lat,Lon); % fprintf('%7.0f ',x) % 458731 407653 239027 230253 343898 362850 % fprintf('%7.0f ',y) % 4462881 5126290 4163083 3171843 4302285 2772478 % utmzone = % 30 T % 32 T % 11 S % 28 R % 15 S % 51 R % % Example 2: If you have Lat/Lon coordinates in Degrees, Minutes and Seconds % LatDMS=[40 18 55.56; 46 17 2.04]; % LonDMS=[-3 29 8.58; 7 48 4.44]; % Lat=dms2deg(mat2dms(LatDMS)); %convert into degrees % Lon=dms2deg(mat2dms(LonDMS)); %convert into degrees % [x,y,utmzone] = deg2utm(Lat,Lon) % % Author: % Rafael Palacios % Universidad Pontificia Comillas % Madrid, Spain % Version: Apr/06, Jun/06, Aug/06, Aug/06 % Aug/06: fixed a problem (found by Rodolphe Dewarrat) related to southern % hemisphere coordinates. % Aug/06: corrected m-Lint warnings %------------------------------------------------------------------------- % Argument checking % error(nargchk(2, 3, nargin)); %2 arguments required CHuso=true; if nargin==3 CHuso=false; end n1=length(Lat); n2=length(Lon); if (n1~=n2) error('Lat and Lon vectors should have the same length'); end % Memory pre-allocation % x=zeros(n1,1); y=zeros(n1,1); utmzone(n1,:)='60 X'; % Main Loop % for i=1:n1 la=Lat(i); lo=Lon(i); sa = 6378137.000000 ; sb = 6356752.314245; %e = ( ( ( sa ^ 2 ) - ( sb ^ 2 ) ) ^ 0.5 ) / sa; e2 = ( ( ( sa ^ 2 ) - ( sb ^ 2 ) ) ^ 0.5 ) / sb; e2cuadrada = e2 ^ 2; c = ( sa ^ 2 ) / sb; %alpha = ( sa - sb ) / sa; %f %ablandamiento = 1 / alpha; % 1/f lat = la * ( pi / 180 ); lon = lo * ( pi / 180 ); if CHuso Huso = fix( ( lo / 6 ) + 31); end S = ( ( Huso * 6 ) - 183 ); deltaS = lon - ( S * ( pi / 180 ) ); if (la<-72), Letra='C'; elseif (la<-64), Letra='D'; elseif (la<-56), Letra='E'; elseif (la<-48), Letra='F'; elseif (la<-40), Letra='G'; elseif (la<-32), Letra='H'; elseif (la<-24), Letra='J'; elseif (la<-16), Letra='K'; elseif (la<-8), Letra='L'; elseif (la<0), Letra='M'; elseif (la<8), Letra='N'; elseif (la<16), Letra='P'; elseif (la<24), Letra='Q'; elseif (la<32), Letra='R'; elseif (la<40), Letra='S'; elseif (la<48), Letra='T'; elseif (la<56), Letra='U'; elseif (la<64), Letra='V'; elseif (la<72), Letra='W'; else Letra='X'; end a = cos(lat) * sin(deltaS); epsilon = 0.5 * log( ( 1 + a) / ( 1 - a ) ); nu = atan( tan(lat) / cos(deltaS) ) - lat; v = ( c / ( ( 1 + ( e2cuadrada * ( cos(lat) ) ^ 2 ) ) ) ^ 0.5 ) * 0.9996; ta = ( e2cuadrada / 2 ) * epsilon ^ 2 * ( cos(lat) ) ^ 2; a1 = sin( 2 * lat ); a2 = a1 * ( cos(lat) ) ^ 2; j2 = lat + ( a1 / 2 ); j4 = ( ( 3 * j2 ) + a2 ) / 4; j6 = ( ( 5 * j4 ) + ( a2 * ( cos(lat) ) ^ 2) ) / 3; alfa = ( 3 / 4 ) * e2cuadrada; beta = ( 5 / 3 ) * alfa ^ 2; gama = ( 35 / 27 ) * alfa ^ 3; Bm = 0.9996 * c * ( lat - alfa * j2 + beta * j4 - gama * j6 ); xx = epsilon * v * ( 1 + ( ta / 3 ) ) + 500000; yy = nu * v * ( 1 + ta ) + Bm; if (yy<0) yy=9999999+yy; end x(i)=xx; y(i)=yy; utmzone(i,:)=sprintf('%02d %c',Huso,Letra); end
和
函数(纬度、经度)= utm2deg (yy, xx utmzone ) % ------------------------------------------------------------------------- % [ 纬度,经度]= utm2deg (x, y, utmzone) % %描述:函数向量的UTM坐标转化为纬度/经度向量(WGS84)。已经从UTMIP中提取了一些代码。m函数由Gabriel Ruiz Martinez设计。% %输入:% x, y, utmzone。% %输出:% Lat:纬度向量。度。+ ddd。Lon:经度向量。度。+ ddd。例1:% x=[458731; 407653; 239027; 230253; 343898; 362850]; % y=[4462881; 5126290; 4163083; 3171843; 4302285; 2772478]; % utmzone=['30 T'; '32 T'; '11 S'; '28 R'; '15 S'; '51 R']; % [Lat, Lon]=utm2deg(x,y,utmzone); % fprintf('%11.6f ',lat) % 40.315430 46.283902 37.577834 28.645647 38.855552 25.061780 % fprintf('%11.6f ',lon) % -3.485713 7.801235 -119.955246 -17.759537 -94.799019 121.640266 % % Example 2: If you need Lat/Lon coordinates in Degrees, Minutes and Seconds % [Lat, Lon]=utm2deg(x,y,utmzone); % LatDMS=dms2mat(deg2dms(Lat)) %LatDMS = % 40.00 18.00 55.55 % 46.00 17.00 2.01 % 37.00 34.00 40.17 % 28.00 38.00 44.33 % 38.00 51.00 19.96 % 25.00 3.00 42.41 % LonDMS=dms2mat(deg2dms(Lon)) %LonDMS = % -3.00 29.00 8.61 % 7.00 48.00 4.40 % -119.00 57.00 18.93 % -17.00 45.00 34.33 % -94.00 47.00 56.47 % 121.00 38.00 24.96 % % Author: % Rafael Palacios % Universidad Pontificia Comillas % Madrid, Spain % Version: Apr/06, Jun/06, Aug/06 % Aug/06: corrected m-Lint warnings %------------------------------------------------------------------------- % Argument checking % error(nargchk(3, 3, nargin)); %3 arguments required n1=length(xx); n2=length(yy); n3=size(utmzone,1); if (n1~=n2 || n1~=n3) error('x,y and utmzone vectors should have the same number or rows'); end c=size(utmzone,2); if (c~=4) error('utmzone should be a vector of strings like "30 T"'); end % Memory pre-allocation % Lat=zeros(n1,1); Lon=zeros(n1,1); % Main Loop % for i=1:n1 if (utmzone(i,4)>'X' || utmzone(i,4)<'C') fprintf('utm2deg: Warning utmzone should be a vector of strings like "30 T", not "30 t"\n'); end if (utmzone(i,4)>'M') hemis='N'; % Northern hemisphere else hemis='S'; end x=xx(i); y=yy(i); zone=str2double(utmzone(i,1:2)); sa = 6378137.000000 ; sb = 6356752.314245; % e = ( ( ( sa ^ 2 ) - ( sb ^ 2 ) ) ^ 0.5 ) / sa; e2 = ( ( ( sa ^ 2 ) - ( sb ^ 2 ) ) ^ 0.5 ) / sb; e2cuadrada = e2 ^ 2; c = ( sa ^ 2 ) / sb; % alpha = ( sa - sb ) / sa; %f % ablandamiento = 1 / alpha; % 1/f X = x - 500000; if hemis == 'S' || hemis == 's' Y = y - 10000000; else Y = y; end S = ( ( zone * 6 ) - 183 ); lat = Y / ( 6366197.724 * 0.9996 ); v = ( c / ( ( 1 + ( e2cuadrada * ( cos(lat) ) ^ 2 ) ) ) ^ 0.5 ) * 0.9996; a = X / v; a1 = sin( 2 * lat ); a2 = a1 * ( cos(lat) ) ^ 2; j2 = lat + ( a1 / 2 ); j4 = ( ( 3 * j2 ) + a2 ) / 4; j6 = ( ( 5 * j4 ) + ( a2 * ( cos(lat) ) ^ 2) ) / 3; alfa = ( 3 / 4 ) * e2cuadrada; beta = ( 5 / 3 ) * alfa ^ 2; gama = ( 35 / 27 ) * alfa ^ 3; Bm = 0.9996 * c * ( lat - alfa * j2 + beta * j4 - gama * j6 ); b = ( Y - Bm ) / v; Epsi = ( ( e2cuadrada * a^ 2 ) / 2 ) * ( cos(lat) )^ 2; Eps = a * ( 1 - ( Epsi / 3 ) ); nab = ( b * ( 1 - Epsi ) ) + lat; senoheps = ( exp(Eps) - exp(-Eps) ) / 2; Delt = atan(senoheps / (cos(nab) ) ); TaO = atan(cos(Delt) * tan(nab)); longitude = (Delt *(180 / pi ) ) + S; latitude = ( lat + ( 1 + e2cuadrada* (cos(lat)^ 2) - ( 3 / 2 ) * e2cuadrada * sin(lat) * cos(lat) * ( TaO - lat ) ) * ( TaO - lat ) ) * ... (180 / pi); Lat(i)=latitude; Lon(i)=longitude; end
我希望这对你有所帮助。