4
$\begingroup$

On page 142 of Lackmann'sMidlatitude Synoptic Meteorology, Equation 6.7 gives the derivative of the Boussinesq buoyancy$b = \frac{g \theta'}{\theta_0 (z)}$(perturbation potential temperature$\theta'$and base state$\theta_0 (z)$) as

\begin{equation} \frac{db}{dt} = -w \frac{g}{\theta_{00}} \frac{d \theta_0}{dz} \end{equation}

where$\theta_{00}$is the base state potential temperature$\theta_0 (z)$at$z = 0$. While I understand this to be an application of the chain rule

\begin{equation} \frac{db}{dt} = \frac{\partial z}{\partial t} \frac{\partial \theta_0}{\partial z} \frac{\partial b}{\partial \theta_0}, \end{equation}

I am unable to see why

\begin{equation} \frac{\partial b}{\partial \theta_0} = - \frac{g}{\theta_{00}} \end{equation}

when I instead would expect

\begin{equation} \frac{\partial b}{\partial \theta_0} = - \frac{g \theta'}{\theta_0^2 (z)}. \end{equation}

Any help would be much appreciated!

$\endgroup$

    0

    Reset to default

    Your Answer

    By clicking “Post Your Answer”, you agree to ourterms of service,privacy policyandcookie policy

    Browse other questions taggedorask your own question.