这些模型似乎相当简单。关键字“煮”这个词,我想。考虑到类比与沸水锅。水作为一个恒温器(各种各样的)阻止气温上升太多,破坏/烧水壶。但是,一旦水“耗尽”,即它都消失了……当说到地球(或任何行星),额外的蒸汽也徒一种温室气体,从而有效地将热量。这是明确的介绍(戈德布拉特et al) 2013年的论文,这指的是(Simpson-Nakajima限制)(https://en.wikipedia.org/wiki/Runaway_greenhouse_effect The_moist_greenhouse_limit)在这方面。数值估计这个极限实际上是没有那么简单。计算限制不同取决于使用的一维与三维模型(后者通常导致更高的极限,由于哈德利环流),是否一个假设一个简单的“水世界”(早期的论文一样)或更复杂的模型,模型的土地的数量和分布质量。更多的土地通常增加了限制。 You could look at some more recent papers (there are a lot!) such as summarized in [Kodama et al., 2019](https://hal.archives-ouvertes.fr/hal-02386474) pp. 3-4, where it goes from 102% S0 (Goldblatt, 2013) to some 121% S0 ([Wolf and Toon, 2015](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JD023302)) (see also [write-up](https://www.science.org/content/article/earth-wont-die-soon-thought) in *Science* news section about the latter) or even 180% S0 according to Kodama et al., e.g. teaser figure from the latter: > [![enter image description here][1]][1] > > Figure 9. The runaway thresholds for various surface water distributions as a function of the land fraction. The runaway thresholds for water distributions determined by the Earth’s, Mars’ and Venus’ topographies are located between those for the zonally and meridionally uniform surface water distributions. The dashed lines describe the runaway threshold for aqua planets which also depend on the water distribution [[Kodama et al., 2018]](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JE005383) [1]: https://i.stack.imgur.com/P3N75.png
Baidu
map