(TEOS-10手册)(http://www.teos - 10. - org/pubs/teos - 10 - _manual.pdf),页26日说,潜在的流体温度的温度是一个包裹保护其吉布斯能量和绝对盐度如果在表面,或从一个绝热温度梯度的积分。保守的温度不是一个真正的温度,但焓的倍数。这是一个能量的比例有温度的单位。规模因素是水的热容在标准状态,因为它是常数。在潜在的温度、热容不得不同在提升。这种区别出现很多在气象学,潮湿的静态焓是守恒的绝热上升,而其他措施的温度并不守恒的。我认为造成这一变化的原因是类似于气象学,为什么我们会使用焓。假设绝热压力和温度的变化也改变一些反应的平衡系数,表示美元\ ce{二氧化碳+水- > H + + HCO3 -} $。这将改变绝对盐度,因为它是分开一个水分子离子。实际的提升可以绝热-没有混合与周围的水,但它不再是isohaline。 The enthalpy will still be conserved, though. This is why I think your questions ([here's the other one](//www.hoelymoley.com/questions/5151/differences-between-teos-10-and-eos-80-for-salinity/5159#5159)) are related: using a mass-based salinity fits in much better with a thermodynamically-consistent formulation of the Equation of State, and using the enthalpy over the potential temperature is part of this complex salinity-temperature-entropy relationship. The manual mentions that near the surface, the differences between potential and conserved temperature should be really small. The heat capacity chosen to scale the enthalpy is similar to that for surface water. You'd get the largest differences at depth and where the composition of seawater is much different (like with absolute salinity). The difference here is whether that composition is expected to change with temperature and pressure.