好问题!如你所知,鲍文的反应级数描述了硅酸盐矿物的结晶顺序在一个冷却的岩浆。复杂阴离子的硅酸盐四面体的四个氧原子周围一个硅原子,与强大的共价键。每个四面体可以从彼此孤立或他们可能是共价结合在一起通过共享氧原子之间相邻四面体。这样他们可能形成单一链(辉石),双链(角闪石),表(黑云母)和联锁四面体(石英)的三维网络。每一个共价键结构组(3 d网络除外)连着周边结构组(如单链单链)通过离子键干预阳离子(K <一口> + < /一口>,Na <一口> + < /一口>,Ca <一口> 2 + < / >一同晚餐,Mg <一口> 2 + < / >一同晚餐,Fe <一口> 2 + < / >一同晚餐,等等)。相对而言,* *共价键较低熔点比离子键。* *[源][1]在博文的反应级数,冷却器的矿物质形成的不连续系列富硅和氧和穷在金属阳离子。因此,矿物在冷端也更由共价键离子键。* *这个流行的原因长英质的矿物熔体在较低的温度比镁铁质的* *。 Your logic is correct when looking at mineral stability in the face of chemical weathering. At the Earth's surface, those covalent bonds are much more stable and minerals like quartz tend to be much more resistant to weathering than olivine or pyroxene. This is described in the [Goldich stability series][2], which I like to think of as Bowen's reaction series stood on its head. [1]: http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Chemical_Bonding/Covalent_Bonds_vs_Ionic_Bonds [2]: http://www.columbia.edu/~vjd1/weathering.htm#Goldich
Baidu
map