一些想法——首先,这很难确定没有指定其他参数的假设的aqua-planet。我们首先假设aqua-planet地球大小一样的,海洋的深度等于5公里(室内太平洋地球上一样)。风* *非色散产生波:* *这里的最大风速波高是一个函数(获取)。然而,风速一般不是波高的函数(除非你像是从ENSO walker-circulation调用概念,但你不会得到ENSO因为没有大陆边界)。最大的波高和获取之间的关系在深水中,经验可以被描述为$ $ H_{马克斯}= 0.332 \ sqrt {F} $ $这一切说它是不可能确定美元H_{马克斯}不知道美元的大气动力学。如果你假设大气动力学是地球上一样(风暴的统计数据),那么这个小经验关系建议风力产生的海浪的高度应该为一个同样大小的aqua-planet没有什么不同。大的行星_do_然而有更大的风暴……* *涡流和行星波* *涡流波,但完全不同于风力产生的波浪。虽然他们肯定不会达到风能产生的海浪的高度,其波长大几个数量级。所以从技术上讲,你可以说他们实际上是“大”。 Along with eddies, there _planetary waves_ such as Rossby waves and Kelvin waves. All these eddies and planetary waves are limited in size by the Rossby radius of deformation. Which is to say, their maximum size is effectively limited by the curvature of the earth. **Upshot** To get larger wind generated waves, you need larger storms. Therefore you need a larger planet (e.g. great red spot on jupiter). To get larger planetary waves and eddies, you also need a larger planet! The reason that larger planets have both larger storms _and_ larger planetary wave/eddies is the same ~ which is that the rossby radius is bigger for a bigger planet. You might be interested to check out something called the "aqua planet experiment" project. These are general circulation models run on a hypothetical planet with no continent, they're all just atmosphere and ocean. The image below is cloud cover output from an aqua-planet simulation. ![aqua planet][1] [1]: https://lh3.googleusercontent.com/-Bk5C3dex8ow/U7eyCVVLl4I/AAAAAAAAxjc/vOCJyvpyjNw/w500-h375-p/aquaplanet_NICAM.gif
Baidu
map