露点温度是温度,饱和水汽压e_s美元。如果我们用饱和水蒸气压力的经验公式,像开始的马格努斯公式\{方程}e_s (T_d) = 6.1078 \ exp \左({\压裂{17.1 \ cdot T_d} {235 + T_d}} \) \文本{hPa}、{方程}\结束T_d美元在哪里露点温度(注意:T_d需要美元在摄氏度和注意e_s美元在hPa),我们可以发现水蒸气压力e美元。这个公式是基于(这本书由克劳斯)[1]。相对湿度是由RH = e / e_s美元。现在我们可以计算相对基于以下变量:1。T (°C)美元(环境温度)2。T_d [°C]美元(露点温度)现在设置\{方程}开始e (T_d) = 6.1078 \ exp \左({\压裂{17.1 \ cdot T_d} {235 + T_d}} \) \文本{hPa} \{方程}和\{方程}开始e_s (T) = 6.1078 \ exp \离开({\压裂{17.1 \ cdot T} {235 + T}} \右){hPa} \文本。结束\{方程}最后计算RH = e / e_s美元。注意,马格努斯公式是基于集成的克劳修斯——克拉珀龙方程方程。6.1078 hPa的因素是一个参考水平水蒸气压力(在273.15 K,假设一个恒定的比热容)。 As for pressure in the formulas: usually in an atmospheric context we assume to deal with ideal gases, and thus the pressure is just "hidden" inside the temperature. One more word of caution. I think the currently WMO approved formula for saturation water vapor pressure is the [Goff - Gratch equation][2]. So you may want to use this one instead of the Magnus formula. However, for the purpose of this answer it should suffice. [1]: https://doi.org/10.1007/3-540-35017-9 [2]: https://en.wikipedia.org/wiki/Goff%E2%80%93Gratch_equation